
PCMI 2022: Supersingular isogeny graphs in cryptography

Exercises Lecture 1: Elliptic curves, Isogenies, CGL Hash Function

TA: Jana Sotáková version July 25, 2022

You can find hints and more explanation for the exercises on the following page.
Please note that we can use the Zulip stream on Drew’s server to ask questions!
Jana will try to keep the Whova and PCMI websites up to date but quickest updates are here.

1. (Elliptic curves) Over Fp for p = 431:

(a) Define an elliptic curve E/Fp with E : y2 = x3 + x.

(b) Compute its j-invariant;

(c) Find an elliptic curve E1/Fp with j-invariant 234;

(d) Is this elliptic curve supersingular?

(e) Find another elliptic curve E2 with j-invariant 234 such that E1 and E2 are not isomorphic
over Fp. Find the smallest extension Fq/Fp such that E1 and E2 are isomorphic.

2. (Isogenies) Compute the following for E : y2 = x3 + x/F4312

(a) Isogeny ϕ : E → E ′ with kernel generated by (0, 0). What is the degree?

(b) Compute the dual isogeny ϕ̂ : E ′ → E;

(c) Find all the isogenies of degree 2 from E.

(d) Find all the cyclic isogenies of degree 16 from E.

(e) Compute a cyclic isogeny of degree 16 as a sequence of 2-isogenies.

3. (Modular polynomial) Use the modular polynomial ΦN(X, Y ) to find isogenous curves:

(a) Find all the 2-isogenies curves to E : y2 = x3 + 26x + 279/F4312 ;

(b) Find j-invariants of elliptic curves admitting a 8-isogeny from E.

(c) Find all the self-loops in the `-isogeny graph for ` ≤ 11.

4. (Supersingular isogeny graphs) Write code to generate the supersingular isogeny graph over Fp2 ,
using the following steps. On input coprime primes p and `;

(a) Find one supersingular elliptic curve over E0/Fp2 , represented by the j-invariant;

(b) Write a neighbor function that on input an elliptic curve E, finds all the neighbours of E in
the SSIG G`: (the j-invariants of) all the supersingular elliptic curves `-isogenous to E.

(c) Using a breadth-first-search approach, generate the graph by starting from the curve found
in Step (b) and the Neighbor function from Step (c).

You can visualize the supersingular isogeny graph for instance in Sage. You can use the code in
your Sage installation or on Cocalc.

5. (CGL Hash function, details here and here.) For a small prime p and any starting supersingular
elliptic curve E, find a collision for the CGL hash fuction on the 2-isogeny SSIG. I.e., find two
strings that hash to the same elliptic curve. This requires you to decide on the ordering of the
edges in the SSIG. Find two isogenies to the same curve.

https://pcmi22.zulipchat.com/#narrow/stream/332216-GSS-lauter
https://jana-sotakova.github.io/PCMI22
https://jana-sotakova.github.io/PCMI/visual_SSIG.txt
https://cocalc.com/
https://eprint.iacr.org/2006/021.pdf
https://www.math.mcgill.ca/goren/PAPERSpublic/CharlesGorenLauterHash.pdf


Hints, comments, definitions

1. The elliptic curves E : y2 = x3 ± x always have j-invariant 1728 and are supersingular if and only
if p ≡ 3 mod 4. Similarly, the curve E : y2 = x3 ± 1 always has j-invariant 0 and is supersingular
if and only if p ≡ 2 (mod 3). Keep these two examples in mind.

As Kristin mentioned in the lecture, two curves with the same j-invariant are isomorphic over F̄p

but not necessarily over the same field. Notably, (for p > 3) there will always be two isomoprhism
classes over Fq, and those curves are quadratic twists of each other (in the case j(E) = 1728 then
quartic twists).

Magma commands: EllipticCurve, jInvariant, EllipticCurveWithjInvariant,

IsSupersingular, QuadraticTwists, IsIsomorphic

2. For curves in the Weierstrass form, points with x = 0 are always of order 2. So the isogeny should
be of degree 2. The dual isogeny ϕ̂ is such that

ϕ̂ ◦ ϕ = [degϕ] on E,

the dual isogeny will therefore also be an isogeny of degree 2. In isogeny graphs, we typically
identify an isogeny with its dual to get the undirected edges. Note that this requires choices for
j = 0 and j = 1728 because of automorphisms.

Every isogeny is determined by its kernel, so all the 2-isogenies correspond to all the (cyclic)
subgroups of size 2. So to find all the 2-isogenies, we need to determine all the points of order 2.

Cyclic isogenies of degree 16 correspond to cyclic subgroups of degree 16. You can find them all
by first finding a basis of the 16-torsion, that is, finding two independent points of order 16, and
then finding all the cyclic subgroups of size 16.

Remember that isogenies are the well-behaved group quotients for elliptic curves: the isogeny with
kernel 〈P 〉 is sometimes written as E → E/〈P 〉. Moreover, if P has order 16, then the 16-isogeny
with kernel 〈P 〉 can be decomposed using intermediate subgroups as

E → E/〈8P 〉 → E/〈4P 〉 → E/〈2P 〉 → E/〈P 〉.

Magma commands: E![0,0] defines (0, 0) as a point on E; Order to compute order of a point,
Random(E) to get a random point on E; To compute isogeny: IsogenyFromKernel requires a
kernel polynomial; for point P of order 2, can get as follows:

R<X> := PolynomialRing(F); IsogenyFromKernel(E, X - P[1]);

Easy way how to generate isogenies from points for any N :

function IsogenyFromPoint(P) // Needs to have the poly ring in X defined!

Edom := Curve(P);

n := Order(P);

return IsogenyFromKernel(Edom, &*[X - (i*P)[1] : i in [1..n div 2]]);

end function;

Check independent points using the N -th Weil pairing WeilPairing(P,Q, N);

2



3. Modular polynomials are polynomials ΦN(X, Y ) ∈ Z[X, Y ] with the following property for E1, E2:

� there exists a cyclic N -isogeny E1 → E2 if and only if ΦN(j(E1), j(E2)) = 0 in Fq;

Note that this isogeny is not necessarily defined over Fq. These polynomials are symmetric in X
and Y ; for N = ` prime, they have degree ` + 1 in both X and Y . Moreover, they have giant
coefficients, see Sutherland’s database. Don’t forget to reduce the modular polynomials to the
finite field you are working in!

Modular polynomials can be used to show there is an `-isogeny between two elliptic curves, such
as when you are defining the isogeny graphs. But they do not help you find the isogeny, compare
this with Exercise (2).

Self-loops in the supersingular isogeny graph correspond to self-isogenous elliptic curves, hence to
roots of Φ`(X,X). Note that this polynomial factors over Z already as a product of Hilbert class
polynomials for imaginary quadratic fields that admit an element of norm `. We will revisit this
once we talk about endomorphisms of elliptic curves. For now, you can take as granted that

� a self-`-isogeny ↔
� endomorphism of degree `↔
� element in the endomorphism ring of norm `↔
� the endomorphism ring containing an order O in an imaginary quadratic field such that the

order contains an element of norm `, with p being inert in the imaginary quadratic field and
j(E) being the root mod Fp2 of the Hilbert class polynomial of O.

This is CM theory at its most beautiful! See more in Section 5.3.4 of Charles-Goren-Lauter .

Magma commands: ClassicalModularPolynomial is the database of modular polynomials,
be careful with the large coefficients.

R<X, Y>:=PolynomialRing(F, 2); // F the finite field you need to define

Phi3 :=R!ClassicalModularPolynomial(3); Phi3; // manageable coefficients

You can evaluate polynomials using Evaluate(poly, arg) with arguments arg as a tuple. You
can factor polynomials Factorization;

You can find roots of polynomials using Roots; be careful that you need to do this for a polynomial
in one variable.

4. Generating the supersingular isogeny graph:

(a) What is the size of the supersingular isogeny graph (SSIG):

From the lecture,
#vertices of a SSIG ≈ p/12.

There is a more precise count, coming from the Eichler class number. You can look up the
definition and the proof, easier to remember is that it counts all the supersingular elliptic
curves, weighed by the size of their automorphism groups:

i. Basic count is bp−1
12
c.

ii. Curves with extra automorphisms need to be counted with different weights. So:

3

https://math.mit.edu/~drew/ClassicalModPolys.html
https://www.math.mcgill.ca/goren/PAPERSpublic/CharlesGorenLauterHash.pdf


A. if p ≡ 3 mod 4, add 1 (for j = 1728);

B. if p ≡ 2 mod 3, add 1 (for j = 0).

(note that both cases above can happen for one p!).

(b) How to find one supersingular elliptic curve. For p ≡ 3 mod 4, you can always the the elliptic
curves E : y2 = x3 ± x. Those have j-invariant 1728.

Otherwise, there’s a general algorithm due to Bröker, using CM theory.

Suppose you have an elliptic curve E/L defined over some number field L, which has complex
multiplication by an order O ⊂ K in some imaginary quadratic field K (you can assume that
L is the Hilbert class field of O for simplicity). Now take a prime P|p in L. Then E reduces
to a supersingular elliptic curve modP if and only if p is non-split in K. So, the j-invariant
of E, which is a root of the Hilbert class polynomial f of O, gives a root of f in Fp2 (all
j-invariants of supersingular elliptic curves are in F2

p).

In other words, if p is nonsplit in K, then the roots of the Hilbert class polynomial in Fp2 give
you supersingular elliptic curves, without the need to construct the elliptic curve E first.

There is one more trick you can play. You can try to find an order O satisfying the above
and with odd class number. Then the degree of f is odd and there will be a root already in
Fp. The class number of O is odd for instance if O is the ring of integers in Q(

√
−q) for q a

prime satisfying q ≡ 3 mod 4.

So you just need to find a small q such that q ≡ 3 mod 4 and such that p is inert in K (p will

be a lot larger than q), that is,
(
−q
p

)
= −1.

Note that just guessing randomly doesn’t help. There are about p/12 supersingular j-
invariants, but there are p2 j-invariants in Fp2 , so you only have a chance if 1/p that your
random j is supersingular.

You might think restricting to j ∈ Fp works, but there you actually only have
√
p supersingular

j-invariants, as opposed to p j-invariants in Fp. So you have 1/
√
p chance to guess - which is

negligible for p large.

4

https://www.researchgate.net/publication/228384129_Constructing_supersingular_elliptic_curves

