Computing traces of endomorphisms

Travis Morrison¹ Lorenz Panny² Jana Sotáková³ Michael Wills¹

¹Virginia Tech

²TU Munich, Germany

³University of Amsterdam and QuSoft

October 11, 2023 Leuven

One endomorphism

This talk: \mathbb{F}_q finite field of characteristic $p \gg 0$ and E/\mathbb{F}_q elliptic curve

Endomorphisms and algebraic integers			
endomorphisms	algebraic numbers	(notation)	
endomorphism $\varphi: E \to E$	$\alpha \in \mathcal{O}$	α	
dual map \hat{arphi}	conjugate $\overline{lpha}\in\mathcal{O}$		
$deg(\varphi)$	$nrd(lpha) = lpha \overline{lpha}$	$\textit{n} \in \mathbb{Z}$	
$tr(\varphi) = \varphi + \hat{\varphi}$	$trd(\alpha) = \alpha + \overline{\alpha}$	$t\in\mathbb{Z}$	

With notation as above, α is a root of the monic integral polynomial

$$f_{\alpha}(x) = x^2 - tx + n$$

with $t^2 - 4n < 0$, so $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{t^2 - 4n})$ is an imaginary quadratic field.

If α is a scalar multiplication, then $t^2 - 4n = 0$.

More endomorphisms?

Let E be supersingular. Standard approach to compute endomorphism rings:

Find cycles in the isogeny graph, represented as compositions of (possibly many) isogeny steps of small degree (typically 2, 3, 5). Say you find α, β .

Identify the order generated by α, β

The norms are easy (by construction); can compute traces of α, β . To identify the order, need to compute the *trace pairing*, i.e. compute

 $\operatorname{trd}(\alpha\overline{\beta}).$

From this, obtain an embedding $\mathbb{Z}\langle \alpha, \beta \rangle \hookrightarrow B_{p,\infty}$.

Computing traces

from the definition of trace:

$$t = \operatorname{tr}(\alpha) = \alpha + \overline{\alpha} \quad \Rightarrow \quad \varphi + \hat{\varphi} = [t]$$

from the characteritic equation:

$$\alpha^2 - t\alpha + n = 0 \quad \Rightarrow \quad [t]\varphi = \varphi^2 + [n]$$

Strategy:

(Assume we know *n*.) Find *t* such that $\varphi^2 + [n] = [t]\varphi$.

Schoof's algorithm

Recall that point counting is computing trace of Frobenius:

```
\#E(\mathbb{F}_q)=1+q-t
```

Schoof's approach

Compute t mod ℓ_i for increasing primes ℓ_i until $\prod \ell_i > 4\sqrt{q}$, reconstruct using CRT.

Hasse intervals: $|t| \leq 2\sqrt{q}$.

Apply to endomorphisms

Compute t mod ℓ_i for increasing primes ℓ_i until $\prod \ell_i > 4\sqrt{n}$, reconstruct using CRT.

Negative discriminants: $t^2 - 4n \le 0 \iff |t| \le 2\sqrt{n}$.

Computing mod ℓ

Goal: Find t such that $\varphi^2 + [n] = [t]\varphi$.

Torsion points

Assume that $n = \deg(\varphi)$ is coprime to ℓ . For any $P \in E(\mathbb{F}_q)[\ell]$, set

 $Q = (\varphi^2 + [n])(P)$ $R = \varphi(P)$

Then [t]R = Q and we can recover $t \mod \ell$ by computing this discrete logarithm.

Useful extension

For any point P of order M, we can obtain t mod $ord(\varphi(P)) \leftarrow some divisor of M$.

Working with all torsion points

Suppose *E* is given as
$$E : y^2 = x^3 + ax + b$$
.

Schoof's trick

Instead of finding points in $E[\ell]$, use the division polynomial $\psi_{\ell}(x)$ in the ring

$$\mathcal{R}_\ell = \mathbb{F}_q[x, y]/(\psi_\ell(x), y^2 - x^3 - ax - b))$$

and check the equality $\varphi^2 + [n] = [t]\varphi$ in \mathcal{R}_{ℓ} .

Zero divisors.

Zero divisors g in \mathcal{R}_{ℓ} give factors of $\psi_{\ell}(x)$, and we would instead like to work in

$$\mathcal{R}_g = \mathbb{F}_q[x, y] / (g(x), y^2 - x^3 - ax - b)$$

Schoof-Atkin-Elkies

Point counting:

(Elkies) If *E* admits a \mathbb{F}_q -rational isogeny, we can reconstruct its kernel polynomial g(x) and compute in $\mathcal{R}_g = \mathbb{F}_q[x, y]/(g(x), y^2 - x^3 - ax - b)$.

- + Corresponds to restricting everything to the subgroup defined by g(x).
- + Division polynomials have degree $\frac{\ell^2-1}{2}$, whereas kernel polynomials $\frac{\ell-1}{2}$.
- + For supersingular elliptic curves, all isogenies already defined over \mathbb{F}_{p^2} .

Caveat

Endomorphisms have no special reasons to fix nice subgroups.

Computing for endomorphisms

- $C \subset E[\ell]$ cyclic of size ℓ ,
- g its corresponding kernel polynomial,
- $\alpha \in \text{End}(E)$ an endomorphism with $\ell \nmid \text{nrd}(\alpha)$.

Reducing mod g

Denote by $\alpha|_C$ the image of the defining rational maps of α in $\mathcal{R}_g = \mathbb{F}_q[x, y]/(g(x), y^2 - x^3 - ax - b).$

Computing modulo g

The reduction mod g is additive: $(\alpha + \beta)|_{C} = \alpha|_{C} + \beta|_{C}$ but is not a homomorphism under the "just take the rational maps" operation:

$$\alpha^2|_{\mathcal{C}} \neq \alpha|_{\mathcal{C}} \circ \alpha|_{\mathcal{C}}$$

Note that $\alpha(C) \neq C$ in general, so this composition does not make sense.

Story so far

 α endomorphism of *E*. Trying to find *t* such that $\alpha^2 + [n] = [t]\alpha$.

Strategy

1. If $\ell \mid \#E(\mathbb{F}_q)$: evaluate both $\alpha^2 + [n]$ and α at some ℓ -torsion point, and compute [t] from a discrete log;

2. Otherwise,

2.1 find a kernel polynomial g(x) corresponding to some ℓ -isogeny [BMSS], 2.2 compute in the ring \mathcal{R}_g .

Isogeny primes

Isogenistas like forcing p such that our curves have lots of available torsion.

Differential magic

Acting on differentials

Let $\varphi: E \to E'$ be an isogeny in *standard form*

$$\varphi(x,y) = (F(x), c_{\varphi} \cdot y \cdot F'(x)).$$

Then $\varphi \mapsto c_{\varphi}$ is a nice map into \mathbb{F}_q whenever we can:

1. it is additive when we can: for $\varphi_1, \varphi_2: E \to E'$ we have

$$c_{arphi_1+arphi_2}=c_{arphi_1}+c_{arphi_2}$$

2. it is multiplicative when we can: for $\varphi : E \to E'$ and $\psi : E' \to E''$ we have

$$c_{\psi \circ \varphi} = c_{\psi} \cdot c_{\varphi}$$

mod p magic

Endomorphisms have the extra condition that $\alpha : E \to E$.

For endomorphisms,

the map $\alpha \mapsto c_{\alpha}$ is a ring homomorphism

 $\mathsf{End}(E) \to \mathbb{F}_q.$

In particular, if α satisfies the equation $x^2 - tx + n$, then so does c_{α} .

Computing trace mod *p*.

If α is separable, then $c_{\alpha} \neq 0$ and we can recover

$$t = c_{\alpha} + n/c_{\alpha}$$
 in \mathbb{F}_p

Some timings for computing a trace of random endomorphism

Zooming in

Work in progress¹

COMPUTING SUPERSINGULAR TRACES

TRAVIS MORRISON, LORENZ PANNY, JANA SOTÁKOVÁ, AND MICHAEL WILLS

 $^{^1\}mathsf{Progress:}$ we are finishing the write-up and we're cleaning up the code!