Computing traces of endomorphisms

Travis Morrison ${ }^{1}$ Lorenz Panny ${ }^{2}$ Jana Sotáková ${ }^{3}$ Michael Wills ${ }^{1}$
${ }^{1}$ Virginia Tech
${ }^{2}$ TU Munich, Germany
${ }^{3}$ University of Amsterdam and QuSoft
October 11, 2023 Leuven

One endomorphism

This talk: \mathbb{F}_{q} finite field of characteristic $p \gg 0$ and E / \mathbb{F}_{q} elliptic curve

Endomorphisms and algebraic integers

endomorphisms	algebraic numbers	(notation)
endomorphism $\varphi: E \rightarrow E$	$\alpha \in \mathcal{O}$	α
dual map $\hat{\varphi}$	$\operatorname{conjugate} \bar{\alpha} \in \mathcal{O}$	
$\operatorname{deg}(\varphi)$	$\operatorname{nrd}(\alpha)=\alpha \bar{\alpha}$	$n \in \mathbb{Z}$
$\operatorname{tr}(\varphi)=\varphi+\hat{\varphi}$	$\operatorname{trd}(\alpha)=\alpha+\bar{\alpha}$	$t \in \mathbb{Z}$

With notation as above, α is a root of the monic integral polynomial

$$
f_{\alpha}(x)=x^{2}-t x+n
$$

with $t^{2}-4 n<0$, so $\mathbb{Q}(\alpha)=\mathbb{Q}\left(\sqrt{t^{2}-4 n}\right)$ is an imaginary quadratic field.
If α is a scalar multiplication, then $t^{2}-4 n=0$.

More endomorphisms?

Let E be supersingular. Standard approach to compute endomorphism rings:
Find cycles in the isogeny graph, represented as compositions of (possibly many) isogeny steps of small degree (typically $2,3,5$). Say you find α, β.

Identify the order generated by α, β
The norms are easy (by construction); can compute traces of α, β. To identify the order, need to compute the trace pairing, i.e. compute

$$
\operatorname{trd}(\alpha \bar{\beta})
$$

From this, obtain an embedding $\mathbb{Z}\langle\alpha, \beta\rangle \hookrightarrow B_{p, \infty}$.

Computing traces

- from the definition of trace:

$$
t=\operatorname{tr}(\alpha)=\alpha+\bar{\alpha} \quad \Rightarrow \quad \varphi+\hat{\varphi}=[t]
$$

- from the characteritic equation:

$$
\alpha^{2}-t \alpha+n=0 \quad \Rightarrow \quad[t] \varphi=\varphi^{2}+[n]
$$

Strategy:

(Assume we know n.) Find t such that $\varphi^{2}+[n]=[t] \varphi$.

Schoof's algorithm

Recall that point counting is computing trace of Frobenius:

$$
\# E\left(\mathbb{F}_{q}\right)=1+q-t
$$

Schoof's approach

Compute $t \bmod \ell_{i}$ for increasing primes ℓ_{i} until $\prod \ell_{i}>4 \sqrt{q}$, reconstruct using CRT.
Hasse intervals: $|t| \leq 2 \sqrt{q}$.

Apply to endomorphisms

Compute $t \bmod \ell_{i}$ for increasing primes ℓ_{i} until $\prod \ell_{i}>4 \sqrt{n}$, reconstruct using CRT.
Negative discriminants: $t^{2}-4 n \leq 0 \Longleftrightarrow|t| \leq 2 \sqrt{n}$.

Computing $\bmod \ell$

Goal: Find t such that $\varphi^{2}+[n]=[t] \varphi$.

Torsion points

Assume that $n=\operatorname{deg}(\varphi)$ is coprime to ℓ. For any $P \in E\left(\mathbb{F}_{q}\right)[\ell]$, set

$$
\begin{aligned}
& Q=\left(\varphi^{2}+[n]\right)(P) \\
& R=\varphi(P)
\end{aligned}
$$

Then $[t] R=Q$ and we can recover $t \bmod \ell$ by computing this discrete logarithm.

Useful extension

For any point P of order M, we can obtain $t \bmod \operatorname{ord}(\varphi(P)) \leftarrow$ some divisor of M.

Working with all torsion points

Suppose E is given as $E: y^{2}=x^{3}+a x+b$.

Schoof's trick

Instead of finding points in $E[\ell]$, use the division polynomial $\psi_{\ell}(x)$ in the ring

$$
\mathcal{R}_{\ell}=\mathbb{F}_{q}[x, y] /\left(\psi_{\ell}(x), y^{2}-x^{3}-a x-b\right)
$$

and check the equality $\varphi^{2}+[n]=[t] \varphi$ in \mathcal{R}_{ℓ}.

Zero divisors.

Zero divisors g in \mathcal{R}_{ℓ} give factors of $\psi_{\ell}(x)$, and we would instead like to work in

$$
\mathcal{R}_{g}=\mathbb{F}_{q}[x, y] /\left(g(x), y^{2}-x^{3}-a x-b\right)
$$

Schoof-Atkin-Elkies

Point counting:

(Elkies) If E admits a \mathbb{F}_{q}-rational isogeny, we can reconstruct its kernel polynomial $g(x)$ and compute in $\mathcal{R}_{g}=\mathbb{F}_{q}[x, y] /\left(g(x), y^{2}-x^{3}-a x-b\right)$.

+ Corresponds to restricting everything to the subgroup defined by $g(x)$.
+ Division polynomials have degree $\frac{\ell^{2}-1}{2}$, whereas kernel polynomials $\frac{\ell-1}{2}$.
+ For supersingular elliptic curves, all isogenies already defined over $\mathbb{F}_{p^{2}}$.

Caveat

Endomorphisms have no special reasons to fix nice subgroups.

Computing for endomorphisms

- $C \subset E[\ell]$ cyclic of size ℓ.
- g its corresponding kernel polynomial,
- $\alpha \in \operatorname{End}(E)$ an endomorphism with $\ell \nmid \operatorname{nrd}(\alpha)$.

Reducing mod g

Denote by $\left.\alpha\right|_{C}$ the image of the defining rational maps of α in

$$
\mathcal{R}_{g}=\mathbb{F}_{q}[x, y] /\left(g(x), y^{2}-x^{3}-a x-b\right) .
$$

Computing modulo g

The reduction $\bmod g$ is additive: $(\alpha+\beta)|c=\alpha| c+\beta \mid c$ but is not a homomorphism under the "just take the rational maps" operation:

$$
\alpha^{2}|c \neq \alpha| c \circ \alpha \mid c
$$

Note that $\alpha(\boldsymbol{C}) \neq \boldsymbol{C}$ in general, so this composition does not make sense.

Story so far

α endomorphism of E.
Trying to find t such that $\alpha^{2}+[n]=[t] \alpha$.

Strategy

1. If $\ell \mid \# E\left(\mathbb{F}_{q}\right)$: evaluate both $\alpha^{2}+[n]$ and α at some ℓ-torsion point, and compute [t] from a discrete log;
2. Otherwise,
2.1 find a kernel polynomial $g(x)$ corresponding to some ℓ-isogeny [BMSS],
2.2 compute in the ring \mathcal{R}_{g}.

Isogeny primes

Isogenistas like forcing p such that our curves have lots of available torsion.

Differential magic

Acting on differentials

Let $\varphi: E \rightarrow E^{\prime}$ be an isogeny in standard form

$$
\varphi(x, y)=\left(F(x), c_{\varphi} \cdot y \cdot F^{\prime}(x)\right)
$$

Then $\varphi \mapsto c_{\varphi}$ is a nice map into \mathbb{F}_{q} whenever we can:

1. it is additive when we can: for $\varphi_{1}, \varphi_{2}: E \rightarrow E^{\prime}$ we have

$$
c_{\varphi_{1}+\varphi_{2}}=c_{\varphi_{1}}+c_{\varphi_{2}}
$$

2. it is multiplicative when we can: for $\varphi: E \rightarrow E^{\prime}$ and $\psi: E^{\prime} \rightarrow E^{\prime \prime}$ we have

$$
c_{\psi \circ \varphi}=c_{\psi} \cdot c_{\varphi}
$$

$\bmod p$ magic

Endomorphisms have the extra condition that $\alpha: E \rightarrow E$.

For endomorphisms,

 the map $\alpha \mapsto c_{\alpha}$ is a ring homomorphism$$
\operatorname{End}(E) \rightarrow \mathbb{F}_{q}
$$

In particular, if α satisfies the equation $x^{2}-t x+n$, then so does c_{α}.

Computing trace $\bmod p$.
If α is separable, then $c_{\alpha} \neq 0$ and we can recover

$$
t=c_{\alpha}+n / c_{\alpha} \quad \text { in } \mathbb{F}_{p}
$$

Some timings for computing a trace of random endomorphism

Zooming in

Code demo?

Work in progress ${ }^{1}$

COMPUTING SUPERSINGULAR TRACES

TRAVIS MORRISON, LORENZ PANNY, JANA SOTÁKOVÁ, AND MICHAEL WILLS

[^0]
[^0]: ${ }^{1}$ Progress: we are finishing the write-up and we're cleaning up the code!

